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Abstract—End-host profiling by analyzing network traffic
comes out as a major stake in traffic engineering. A visual
representation of host behaviors as graphs, called graphlets,
provides an efficient framework for interpreting these behaviors.
However, graphlet analyses face the issues of choosing between
supervised and unsupervised approaches. The former can analyze
a priori defined behaviors but are blind to undefined classes, while
the latter can discover new behaviors at the cost of difficult a
posteriori interpretation. This work aims at bridging the gap
between the two approaches. First, to handle unknown classes,
unsupervised clustering is originally revisited by extracting a set
of graphlet-inspired attributes for each host. Second, to recover
interpretability for each resulting cluster, a synoptic graphlet,
defined as a visual graphlet obtained by mapping from a cluster,
is newly developed. Comparisons against supervised graphlet-
based, port-based, and payload-based classifiers with two datasets
of actual traffic demonstrate the effectiveness of the unsupervised
clustering of graphlets and the relevance of the a posteriori
interpretation through synoptic graphlets associated with ex-
tracted clusters. This development is further complemented by
studying evolutionary tree of synoptic graphlets, which quantifies
the growth of graphlets when increasing the number of inspected
packets per host.

(should be 70-200 words for ToN)

Index Terms—Internet traffic analysis; Unsupervised host
profiling; Microscopic graph evolution; Visualization

I. INTRODUCTION

An essential task in network traffic engineering stems from
host-level traffic analyses, where the behavior of a host is
characterized based on traffic (i.e., packet sequence) generated
from the host. Host-level traffic analyses enable to find users
of specific applications for the purpose of traffic control,
to identify malicious or victim hosts for security, and to
understand the trend of network usage for network design
and management. Flow analysis, which also constitutes an
important networking stake, can be fruitfully complemented
by host profiling (e.g., by breaking down host behaviors into
flow characteristics).

Numerous attempts have been made to develop statistical
methods for host profiling. Such methods aim to overcome
packet encryption, encapsulation, use of dynamic ports, or
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dataset without payload – situations that impair the classical
approaches relying on payload inspection [26, 17, 24] and
port-based rules [4]. The most recently proposed ones are
based on heuristic rules [15], statistical classification proce-
dures [27, 18, 22], Google database [28], or macroscopic graph
structure [30, 13, 10, 11].

In particular, an effective yet heuristic approach to host
profiling is based on graphlet [15, 14, 19]. A graphlet is
a detailed description of host communication patterns as a
graph connecting a set of coordinates (A1, A2, . . .) as illus-
trated in Figure 1. Here, communication pattern of a host
is the combination of 5-tuples (proto, srcIP, dstIP, srcPort,
dstPort) underneath the traffic generated by the host, and
leads to diverse visual shapes of graphlets depending on the
host’s application. The graphlet representation facilitates the
intuitive analysis of differences and resemblances among host
behaviors, whereas conventional approaches directly handles
numerical values of statistical features, which are difficult to
interpret.

However, as for any host-profiling approach, the use of
graphlets faces the classical trade-off in choosing between
supervised versus unsupervised procedures. Supervised ap-
proaches rely on a priori determined classes or models of
graphlets [15], pre-defined by human experts in a necessarily
limited number, and these approaches cannot substantially
classify new or unknown host behaviors. Unsupervised ap-
proaches are adaptive insofar as the data directly define
the output classes of graphlets and can discover behaviors
never observed before. These approaches, however, potentially
produce clusters composed of a large number of numerical
feature values that cannot receive easy meaningful or useful
interpretation.

The present work aims at bridging the gap between the two
types of approaches. The main idea for this is the combination
of two techniques: towards the limitation for supervised man-
ner, an unsupervised clustering of graphlets is used to capture
previously undefined classes; and to ease the difficulty for
unsupervised manner, the resulting clusters are re-visualized
into synoptic graphlets for intuitively interpreting the results.
Our approach is evaluated with two major and large data sets
of actual traffic collected on two different links (Sec. III). The
present work is organized along three contributions.

First, the classical problem of supervised classification is
revisited (Sec. IV). This investigation comprises two respects:
a list of graphlet-based features is defined in a relevant way to
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Fig. 1. Examples of graphlets. Traffic from a single source host is represented
as a graph connecting attributes such as proto, srcPort, dstPort, and dstIP

quantify the visual graphlet shape associated with each host;
an unsupervised clustering method is applied to those features
to yield classification in terms of visual graphlet shapes.
Comparisons against a supervised graphlet-based classifier
(BLINC [15]), a port-based one, and a payload-based one
enables us to regard most clusters as matching well-known
host behaviors. This result shows that half of the bridge is
constructed by the discovery of unknown graphlets, which
is a key solution to the conventional problem of supervised
approaches.

Second, the issue of automatically providing interpretation
on the output of unsupervised clustering is addressed (Sec. V).
The inverse problem of reconstructing a synoptic graphlet,
defined as a graphlet inferred from each obtained cluster, is
solved by using an original mapping of the cluster attributes
(cluster centroid) into a graphlet. The development of synoptic
graphlet shows that an interpretable meaning can be associated
automatically to each cluster without any a priori expertise.
The effectiveness of synoptic graphlets, which successfully
provide interpretability for unsupervised approaches as showed
in this work, constructs the remaining part of the bridge.

Third, the nature of host behavior is further studied via
synoptic graphlet (Sec. VI). The use of synoptic graphlet is
expanded to creating an evolutionary tree, which reports the
visually intuitive growth of a set of synoptic graphlets as a
function of the number P of inspected packets per host. This
study is useful in integrating host-level traffic characteristics
of different P in an interpretable manner, and in quantifying
the order of magnitude P beyond which further increase does
not lead to substantially more relevant host profiling, i.e., how
many packets P we need to profile hosts.

II. PRELIMINARIES

A. Graphlet

A graphlet is defined as a graph having following char-
acteristics in the context of network communication: (1) the
graph is composed of several columns (A1, A2, . . .) of nodes,
where a column represents an axis of an attribute of packet or
flow, (2) a node (vertex) in a column is a unique instance of the
attribute, and (3) an edge of neighboring two columns connects
two nodes if corresponding instances are derived from at least
one packet. Columns of graphlet is usually related to flow
attributes (5-tuple): proto (protocol number), srcIP (source IP
address), dstIP (destination IP address), srcPort (source port

number), and dstPort (destination port number), which are
specified in the header field for every packet.

Figure 1 illustrates two manually annotated examples of
graphlets drawn with P = 100 packets per source host. Figure
1(a) shows that the source host sends packets to a specific
destination port of many destination hosts (almost one packet
per flow), which implies that the source host is a malicious
scanner aiming to find hosts running a vulnerable application.
Figure 1(b) displays a host communicating with several hosts
without any specific source/destination port, and hence this
host is a peer-to-peer user (not server or client). As showed
in these examples, a strong merit of graphlet is the visual
interpretability of host characteristics away from examining
huge amount of raw packet traces or directly handling a set
of numerical statistics.

We draw a graphlet from a piece of host-level traffic as
performed in the examples. Here, host-level traffic of a host is
defined as the sequences of packets sent from the host; headers
in those packet contain source IP addresses equivalent to the
host’s address. We do not assume starting time and duration
of traffic measurement, and thus this measurement does not
necessarily capture initiation of flow (e.g., TCP hand shake).
Each graphlet is drawn from a certain number of observed
packets P sent from each host.

The graphlet we use is represented with six columns
A1, . . . , A6, which represent srcIP-proto-srcPort-dstPort-
dstIP-srcPort1 The order of columns is different from the
original definition [15]. We consider that srcIP-srcPort-
dstPort-dstIP should be more comprehensive, because it
clarifies the activity of computer processes inside end-hosts
(IP-Port pairs) and network-wide inter-process communication
among hosts (srcPort-dstPort pairs). We place srcPort at the
right side again to capture the relation between dstIP and
srcPort (inspired by [14]). Since we draw one graphlet per
source host, there is only one point in the left column (srcIP).

B. Related work and open issues

Here the standpoint of the graphlet-based works and this
present work is presented in the context of network traffic
classification conducted over the course of a decade.

A lot of statistics-based methods for traffic analyses have
been proposed to classify flows and host characteristics by
means of supervised methods [23, 1, 16, 28, 25, 8, 20] and
unsupervised methods [30, 18, 7]. These studies have made use
of various machine learning supervised/unsupervised methods
(e.g., Bayesian learning, support vector machine, k-means
clustering, hierarchical clustering, or even natural language
processing on Google search results) applied to traffic features
from various aspects (e.g., packet size, flow sizes, and/or
entropy regarding the number of related hosts/ports). Statistics-
based methods are capable of overcoming packet encryption,
encapsulation, use of dynamic ports, or dataset without pay-
load, which are limitations on conventional approaches relying
on payload inspection [26, 17, 24] and port-based rules [4].

1We define ‘pseudo’ source and destination ports for ICMP to be
srcPort = dstPort = icmp code in order to consistently draw graphlets.
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Fig. 2. Overview of our approach.

Several recent studies particularly focused on large-scale
host-to-host connections [27, 22, 13, 10, 11, 29], a promising
approach that enables to visualize how hosts communicate
with one another and enables to find groups of hosts com-
municating each other. These works leverage existing graph-
based analytical capabilities such as features based on complex
networks [10], or community mining techniques [11], block
identification in communication matrix [13, 29].

Different from those previous works, the approach described
here focuses on graphlets – detailed aspects of host behaviors
including the usage of protocols and source/destination ports.
The use of graphlets has been motivated by their visual
interpretability (as showed before), and has been conducted in
a few works. For example, Ref. [15] performs supervised clas-
sification of flows based on graphlet models pre-determined by
human experts, and Refs. [14, 6] characterize graphlet-based
host behaviors in unsupervised manners as follows. The work
in Ref. [14] discusses in-degrees and out-degrees of nodes and
average degrees of graphlets, and focuses on manual finding of
typical graphlets as well as on time transition of those features.
The work in Ref. [6] classifies hosts, making use of various
features (some of them are inspired by graphlet) applied to an
unsupervised clustering technique.

An open issue in the recent literature, however, is to
overcome the limitation of the supervised/unsupervised ap-
proaches. A substantial limitation of supervised approaches is
derived from their models pre-determined by human, because
nobody can enumerate all of the typical models. On the
other hand, unsupervised methods generally extract a lot of
numerical features, losing visual information of graphlets, and
hence it is difficult to understand “what is actually happens in
graphlet shapes” in the analysis results.

The present work aims to bridge the gap between supervised
and unsupervised analyses on graphlets. In contrast to the pre-
vious works, we newly try to achieve the contributions of (1)
the automation of finding typical graphlets via unsupervised
clustering in an interpretable manner, (2) a method to re-

visualize graphlet from clustering results, and (3) an analysis
on evolution of typical graphlet shapes while increasing the
number of packets per graphlet, which is complementary
to analyses on time-transition of graphlet features. These
contributions constitute a new framework of graphlet analyses.

C. Overview of our approach

The basic flow of our method is organized as follows. Flow
of contribution (1) and (2) are depicted in Figure 2 and that
of (3) is represented in Figure 9.

As a preprocessing, the analysis starts with handling an
aggregated traffic traces (Figure 2(a)) as generally performed.
The traffic is measured in a backbone link and mixed up of
packets sent from hundreds of thousands of hosts (Sec. III). We
preliminarily identify per-host traffic (Figure 2(b)) according
to the source IP addresses specified in the packets, and draw
graphlet from first P measured packets sent from each host
(Figure 2(c)).

(1) Next, an unsupervised clustering over graphlets are
conducted to find typical graphlets (Sec. IV). A numerical
feature vector xh, which represents characteristics of graphlet
shape, is extracted from the graphlet of P packets sent from
host h. The set of feature vectors x1, . . . ,xH, where H is the
total number of analyzed hosts, is applied to a hierarchical
clustering to produce clusters of hosts C1, . . . , CN with a
single distance-based threshold θ (Figure 2(d)). A cluster Cc

consists of hosts that are similar in terms of their feature vector
in the feature space. We select the component of the shape-
based feature vector x which can be inversely converted to
graphlets used below.

(2) Then, clustering results are re-visualized to recover
interpretability (Sec. V). Since unsupervised clustering han-
dles numerical features and thus losses visual information
of graphlet, we re-visualize a graphlet associated with a
cluster (Figure 2(e)). The reproduced graphlet, called synoptic
graphlet, is derived from the feature vector x of the centroid
of a cluster. We originally develop a method to re-visualize
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synoptic graphlet in a deterministic manner, since conven-
tional probabilistic way is not suitable for highly-structured
graphlets.

(3) Additionally, the evolutionary nature of synoptic
graphlets is studied (Sec. VI). The key observation for creating
evolutionary trees of synoptic graphlets is that any graphlet
may evolve from an identical shape (single-line) as P increases
from P = 1. An evolutionary tree is obtained from combining
the clustering results of increasing P (Figure 9). The sets
of clustering outputs of various P result from the single
consistent threshold θ (based on distance in the feature space)
in order to compare the diversity of graphlets on a consistent
basis in the feature space, different from using a threshold
based on the number of resulting clusters.

III. DATASETS

A. Traffic traces

We analyze actual traffic traces stored in the MAWI repos-
itory [21, 3] and traces measured at Keio University (used in
[16] as Keio-I and Keio-II). The MAWI traffic was measured
on a transpacific IPv4 uni-directional link between the U.S.
and Japan for 15 minutes everyday. The public repository re-
moves the payloads of all packets, while the private repository
contains payloads of up to 96 bytes. The Keio traces were
measured for 30 minutes on two different days in 2006 at a
bi-directional edge link in a campus of Keio University. The
payloads of packets up to 96 bytes were preserved as well. We
first removed the packets of protocols other than TCP, UDP,
and ICMP as a preprocess for both datasets.

We mainly report the results obtained from the 12 MAWI
traces collected every 14th of the month from January to
December in 2008. We decided to extract features from hosts
sending at least 1000 packets for each MAWI trace, and at least
100 packets for each Keio trace as the criterion for selecting
analyzed hosts. This was to balance the trade-off between
(a) the statistically lower reliability of analyzed features with
a low value of the criterion, and (b) the too-low number
of analyzed hosts with a high value. We checked that this
arbitrary choice is not crucial, as identical conclusions were
drawn using hosts sending at least 500 and at most 1000
packets for the MAWI traces. Each of the 12 MAWI traces
consists of about 1,700 analyzed hosts, yielding approximately
H = 20, 000 analyzed hosts in total for the 12 traces. The 2
Keio traces contains about H = 10, 000 hosts in total.

B. Pseudo ground-truth generators

Traffic analysis methods generally have to be evaluated with
dataset annotated from ground-truth. A crucial issue, however,
raised in the recent literature lies in designing a procedure to
obtain ground-truth on actual traffic traces. Most of researches
indeed have regarded ground-truth as those labeled by a
single payload-based packet identifier, but a lot of packets
are regarded as unknown to payload classifier (as exhibited in
this paper). Also, payload-based methods do not necessarily
produce correct outputs. Here, to enhance the appropriateness
of dataset, we carefully create three sets of pseudo ground-
truth from different perspectives below.

(a) Reverse BLINC. BLINC was originally proposed in
[15] and extended to Reverse BLINC in [16], which is now
state-of-the-art. BLINC profiles a pair of a source address and
a port, and once the pair is matched with one of the heuristics
rules based on the graphlet models, all pairs connected to that
pair are classified. We used the default setting of 28 thresholds.
BLINC’s classification framework is WWW, CHAT, DNS,
FTP, MAIL, P2P, SCAN, and UNKN (unknown). Since this
classifier reports classification results as flow records, we
need to convert them into a host-level database. For each
source host, we collect a set of flows generated from the host
and select the category (except for UNKN) that is the most
dominant among the flows. For example, if ten flows from a
host are classified into three DNS, one WWW, and six UNKN,
then the type of the host is identified as DNS.

(b) Port-based classifier. We use another classifier, which
was originally developed in [5] to validate an anomaly detector
and was also used in [2, 9]. This tool inspects a set of
packets sent from a host, considering port numbers, TCP
flags, and number of higher/lower source/destination ports
and destination addresses. The classification categories are
WWWS (web server), WWWC (web client), SCAN, FLOOD
(flooding attacker), DNS, MAIL, OTHERS, and UNKN [9].
This tool reports host-level classification results by itself.

(c) Payload classifier. We also select the payload-based
classifier developed in [16]. This classifier inspects the payload
string of each packet by comparing it with its signature
database. The classification categories we select are WWW,
DNS, MAIL, FTP, SSH, P2P, STREAM, CHAT, FAILED (no
payload flows), UNKN, and OTHERS (minor flows such as
games, nntp, smb, and snmp). Since this tool also generates
outputs in the form of flow tables, we merge them into host-
level reports by the same means used to aggregate outputs
from Reverse BLINC.

The hosts annotated by the above classifiers of different
perspectives are used in evaluating the unsupervised analysis
on graphlets presented in the succeeding section.

IV. UNSUPERVISED GRAPHLET ANALYSIS

We first present a method forming the first half of the bridge,
which is to overcome the limitation of supervised approach
(blind to emerging or unknown patterns). This method finds
typical behaviors of hosts with regard to a set of numerical
features in an unsupervised manner without relying on pre-
defined models.

A. Methodology for unsupervised graphlet analysis

1) Extracting shape-based features from graphlets: We first
extract numerical feature values from graphlets, because visual
graphlets cannot be directly applied to conventional statistical
methods (except for image processing). Instead, we choose
several types of features related to shapes, forming a vector
xh for host h.

Preliminary definitions. We annotate the six columns
(srcIP-· · ·-srcPort) as A1, . . . , A6. In column Ai, the total
number of nodes is ni, and nodes are v1,i, . . . , vni,i. We define
i : j as the direction from Ai to Aj , which is used to discuss
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TABLE I
NOTATIONS FOR GRAPHLET DESCRIPTION. A COLUMN HAS TWO

DIFFERENT DEGREE DISTRIBUTIONS BASED ON DIRECTION (E.G., 2ND
COLUMN (A2) IS SEPARATED INTO 2 : 1 AND 2 : 3). SEE SEC. II-A FOR

DETAILS.

Ai i-th column of graphlet (from left to right)
vk,i Node (vertex) in Ai

i : j Direction from Ai to Aj (j = i± 1)
dk,i:j In/out-degree of node vk,i: in-degree for i : i− 1 (left half of vk,i)

and out-degree for i : i + 1 (right half of vk,i)
Di:j Empirical distribution of in/out-degrees in Ai

TABLE II
NOTATIONS FOR GRAPHLET CLUSTERING.

xh Host h’s graphlet feature vector, composed of the five degree-based
features (Figure 3)

Dim Dimension of xh (44-dimensional for 6 columns)
H Number of hosts analyzed
P Number of packets per graphlet
Cc Cluster of label c obtained
N Total number of clusters obtained
θ Distance-based threshold for clustering

the in-degree and out-degree of nodes in column Ai (j = i+1
or i − 1). The in-degree of node vk,i is defined based on
direction i : i−1 as dk,i:i−1, namely, dk,i:i−1 is the number of
nodes in Ai−1 that are connected to node vk,i in Ai, whereas
the out-degree is similarly defined based on direction i : i + 1
as dk,i:i+1. In a sense, node vk,i is characterized by the pair
of the in-degree and out-degree as vk,i = (dk,i:i−1, dk,i:i+1).
We define the array of in/out degrees for direction i : j
as Di:j = (d1,i:j , . . . , dni,i:j). Di:j is empirical distribution
measured from an observed graphlet. Table I summarizes these
notations.

Feature extraction. The proposed features are based on five
types of shape-related information formally as follows (and
visually as in Figure 3).

(1) ni = |Di:i+1| = |Di:i−1| is the total number of nodes in
column Ai. (6 columns)

(2) oi:j =
∑

dk,i:j∈Di:j
I(dk,i:j = 1), where I(·) is the

indicator function, is the number of nodes that have one
degree of direction i : j. (10 directions)

(3) µi:j = 1
ni

∑
dk,i:j∈Di:j

dk,i:j is the average degree of
direction i : j. (10 directions)

(4) αi:j = maxdk,i:j∈Di:j{dk,i:j} is the maximum degree of
direction i : j. (10 directions)

(5) βi:i+1 = dk,i:i−1, where k = arg maxl{dl,i:i+1} is the
degree on the other side of the node from Feature 4. If
more than one nodes have the highest degree for Feature
4, the pair with the highest degree is selected from among
the candidates. (8 directions because the edge columns
have no pair degree)

As a result, from the graphlet for host h, we obtain a feature
vector xh = (xh,1, . . . , xh,44) = (n1, . . . , n6, o1:2, . . . , o6:5,
µ1:2, . . . , µ6:5, α1:2, . . . , α6:5, β2:1, . . . , β5:6) of dimension
Dim = 44 (= 6 + 10 + 10 + 10 + 8). We examine packet
traces or flow lists (input) to compute these features (output).
The index i : j is omitted when not needed.

Examples. Figure 3 shows an example of features. For
direction 2 : 3, there are four nodes (n2 = 4) and three
nodes of one-degree (o2:3 = 3), and the average degree is

A1 A3 A4

Feature 1:
Number of nodes       = 4

A1 A2 A3 A4

Feature 2:
Number of one-degree nodes
           = 3

A1 A2 A3 A4

Feature 3:
Average degree
             = 1.5

A1 A2 A3 A4

Features 4 and 5:
Max degree            = 3
Back degree of max            = 1

n2 o2:3

μ 2:3
α2:3

β2:3

= ( x1, x2, ... )
= ( n 1, o 1:2, μ 1:2, α 1:2, β 1:2, n 2 ... )

x

Direction 2:3

Direction 2:3 Direction 2:3

A2

Fig. 3. Shape-based graphlet features. The behavior of a host is quantified
as the set of numerical features, which are used in unsupervised clustering
and re-visualization. One feature is derived from a column, and remaining
four are defined based on a direction. Host h’s feature vector xh consists of
all the features extracted from the host’s graphlet for all directions i : j. The
primary motivations of selecting this set of features are (a) to include well-
studied features to produce relevant results and (b) the ability to re-visualize
graphlet from those features. See Sec. IV-A1 for formal definition.

1.5 (µ2:3 = 1.5). The second bottom node has the highest
degree of three (α2:3 = 3) and the degree of the node for the
other direction is one (β2:3 = 1).

Practical meanings. Even though these features are se-
lected from the viewpoint of graphlet re-visualization (Sec. V),
a few of them can also be interpreted as traffic characteristics
in a practical sense. ni is the number of unique instances of the
flow attribute (e.g., the number of destination addresses). µi:j

and αi:j are respectively the average and maximum number
of unique flows of an instance of the attribute among all the
instances.

Relevance of features. The selection of the five types of
features is empirically motivated by two objectives: (i) the
expected ability to obtain relevant clustering results because
a few of the features are already well-known and well-
studied [6] and (ii) the ability to re-visualize graphlets from
the resulting clusters as explained in Sec. V. Macroscopic
degree-related features such as betweenness, the assortativity
coefficient, or eigenvalues, are not used because graphlets are
microscopic and highly structured. We only use graph-based
features to evaluate the interpretability of graphlet clustering
results, although there are many other well-studied features
such as TCP flag, packet size, and flow size. Such features and
ours are not exclusive but complementary; using both types
would enhance host profiling schemes.

2) Applying graphlet features to unsupervised clustering:
Here, we establish a method to finding typical host behaviors
in terms of graphlet shapes. At a high-level view, a set of hosts
x1, . . . ,xH are grouped into clusters C1, . . . , CN (clusters are
disjoint sets of the hosts). Table II lists the notations used for
the graphlet clustering.
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Feature normalization. Each feature value xh,i from fea-
ture vector xh is mapped onto a log space as log10(xh,i + 1).
For the features related to the ID of the transport protocol, the
possible ranges of the values are adjusted to the other features
(i.e., addresses and ports) as follows: log10(P

xh,i

min(3,P ) + 1),
where P is the number of analyzed packets to be drawn as a
graphlet, and the value 3 stems from the number of analyzed
protocols (TCP, UDP, and ICMP). Hence, this type of feature
is distributed into [0, log10(P +1)] as well as the other features
for any P .

Unsupervised clustering. Unsupervised clustering finds
groups of hosts that are similar in terms of feature values by
analyzing the H hosts x1, . . . ,xH. The hierarchical clustering
[18] with Ward’s method is used, as it is known to outperform
other methods (e.g., single-linkage method). The similarity
between a pair of clusters (Ci, Cj) is defined as a merging
cost: D(Ci, Cj) = E(Ci ∪ Cj) − E(Ci) − E(Cj), with
E(Ci) =

∑
h∈Ci

(D(xh, ci))2 the intra cluster variance in
Cluster Ci, D(x,y) the Euclidean distance between vectors
x and y, and ci the average feature vector of all hosts in Ci.
The distance-based threshold θ is used to separate clusters in
this feature space. The clustering produces a set of N clusters
C1, . . . , CN , depending only on θ (each host is included in
a single cluster only). The selection of θ is discussed in
Sec. IV-B.

Motivation for distance-based threshold instead of
number-based one. The distance-based threshold θ is prefer-
able compared to cluster-number-based thresholds (such as the
one for the K-means technique). This is because a consistent
value of θ can be used for any P , which mitigates the
burden of parameter tuning in analyses with several P s as
performed in Sec. VI. Number-based thresholds would have
to be appropriately tuned through trial-and-error independently
for each P , as the number of typical clusters for each P
cannot be known. The consistent use of a single threshold
over different P s is empirically enabled by the normalization
of the feature spaces as [0, log10 P ], because distance between
two clusters of typical behaviors will remain mostly the same
for different P s. Instead, conventional normalization into [0, 1]
would induce clusters with different behaviors at larger P to
be located closer, requiring θ to be decreased.

Computational load. We used hcluster methods in the
amap R-library. Approximately 1.5 GB memory was required
for about H = 20, 000 instances of Dim(x) = 44 dimensional
vectors. It took around 2.4 minutes with a 2.8 GHz Intel Core
2 Duo CPU with 4GB memory. By performing the clustering
with changing H , we empirically confirmed that time and
space complexities were both O(H2).

B. Results of finding typical patterns of host behaviors

1) Threshold selection: The distance-based threshold θ
eventually determines the resulting number of extracted clus-
ters N according to the conventional trade-off: a too-high
θ misses a number of typical host behaviors, while a too-
low θ produces redundant clusters (i.e., different clusters
having similar compositions). We experimentally found that
thresholds that balance this trade-off well are θ = 500 with
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Fig. 4. Clustering threshold θ characterized by the dependency on the
number of analyzed hosts H and the number of resulting clusters N . This
figure shows referential values of θ to obtain a certain number of clusters.
For example, θ = 500 for H = 20, 000 hosts with P = 1, 000 from MAWI
is selected for the following analyses, because it produces about N = 20
clusters, which well-balance the trade-off discussed in Sec. IV-B1. The use
of distance-based threshold is equivalent to number-based one in terms of a
single P , whereas the distance is effective in understanding relative number
of clusters for different P s with a consistent criteria as conducted in Sec. VI.

the MAWI traces (about H = 20, 000 hosts) for P = 1000,
producing approximately N = 20 clusters, and θ = 250 with
the Keio traces (about H = 10, 000 hosts) for P = 100,
resulting in N = 16 clusters. This trade-off has been manually
inspected, because it is quite difficult to computationally
identify redundancy in terms of the shapes of graphlets, which
are one of our major focus and are enumerated in Sec. V.

Figure 4 addresses the characteristics of θ by showing its
relationship to the number of analyzed hosts H and the number
of clusters N obtained from (a) MAWI (for P = 1000) and (b)
Keio (for P = 100). Each set of analyzed hosts was selected
from a random sample of the total number of original hosts
by changing the sampling rate. This figure suggests referential
values of θ for each dataset to obtain a certain number of
clusters that balances the trade-off well for any H .

We note that this value of θ can be consistently used for
other P , and this is the reason why we do not directly use
the number-based threshold. Since θ is based on the distance
in the feature space, we can compare the clustering outputs
from various P with a single consistent criteria. For example,
smaller P might lead to fewer number of clustering with regard
to the feature space. We confirmed that the value of θ is
consistently appropriate for other P as showed in Sec. VI.

2) Typical patterns of host behaviors: Table III shows the
clustering result, with H = 20, 000 hosts at P = 1000 of
MAWI data, obtained from a comparison between the graphlet
clustering and the three classifiers, i.e., Reverse BLINC (R-
BLINC), port-based classifier (Port), and payload-based clas-
sifier (Payload). This table displays the total number of hosts
in each category and each cell shows the number of hosts in
the intersection between two classes of two classifiers. The
first row of the column headings is auto-generated labels.
The second row shows graphlets re-visualized from clusters
as discussed in Sec. V, and the bottom row is discussed in
Sec. VI.

The sparseness of Table III indicates that each cluster
mostly corresponds to a type of host behavior. For instance,
C6 (containing 1427 hosts) is characterized by one typical
category because most of the hosts are labeled as a category
of each classifier: 1361 hosts as WEB by R-BLINC, 1351
hosts as WWWC by Port, and 1316 hosts as WEB by Payload.
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TABLE III
RESULTING CLUSTERS (MAWI WITH P = 1000) COMPARED WITH THREE CLASSIFIERS: REVERSE BLINC (R-BLINC), PORT-BASED CLASSIFIER
(PORT), AND PAYLOAD-BASED CLASSIFIER (PAYLOAD). N = 20 CLUSTERS ARE OBTAINED FROM THE ANALYZED H = 20, 000 HOSTS WITH THE

SELECTED THRESHOLD θ = 500. A CELL SHOWS THE NUMBER OF HOSTS IN THE INTERSECTION BETWEEN A CLUSTER AND A CATEGORY OF A
CLASSIFIER. COLUMN HEADINGS SHOW, FROM TOP TO BOTTOM, AUTO-GENERATED LABELS, SYNOPTIC GRAPHLETS (DISCUSSED IN SEC. V AND

LARGER FIGURES ARE SHOWED IN FIGURE 9), AND THE NUMBER OF HOSTS IN A CLUSTER. THE LAST ROW IS DISCUSSED IN SEC. VI-B. ROW HEADINGS
SHOW, FROM LEFT TO RIGHT, THE CLASSIFIERS, THE NAME OF CATEGORY, AND THE NUMBER OF HOSTS FOR EACH CATEGORY OF A CLASSIFIER.

SPARSENESS OF THE TABLE INDICATES THE VALIDITY OF EACH METHOD. GROUPING HOSTS IDENTIFIED AS UNKNOWN BY CLASSIFIERS AND RELATING
THEM TO KNOWN HOSTS PROVIDES KEYS TO PROFILE THEM.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

4594 1252 986 1283 1526 1427 1134 274 715 451 297 152 950 961 613 652 964 690 221 305

R
-B

L
IN

C WEB 10199 1612 672 348 991 825 1361 1031 9 249 5 13 885 233 199 539 681 527 7 12
DNS 1131 12 54 35 6 50 17 25 208 4 62 56 49 1 216 156 1 38 46 92 3

MAIL 721 17 21 8 21 25 34 39 7 2 8 16 189 183 17 44 81 9
P2P 1660 572 14 18 22 222 3 14 33 11 17 3 10 5 285 52 14 107 21 61 176

SCAN 191 191
FTP 253 33 95 5 1 8 17 1 93

CHAT 24 1 16 7
UNKN 5268 2348 491 577 242 309 12 25 24 439 174 238 72 42 30 23 64 77 15 54 12

Po
rt

WWWS 6538 1553 670 710 1178 101 1 6 1 2 892 154 9 709 538 14
WWWC 5457 1337 4 722 1351 987 9 255 1 1 19 35 202 532 2

DNS 807 8 51 33 2 5 5 10 180 3 53 43 32 1 114 74 40 50 103
MAIL 632 27 15 5 14 24 33 39 7 11 16 151 162 12 27 84 5
P2P 361 74 5 3 6 16 2 4 1 160 24 51 2 12 1
SSH 645 18 466 2 3 13 1 1 2 17 14 86 5 4 3 10

SCAN 620 2 3 1 1 6 389 19 64 38 30 1 64 2
FLOOD 709 66 1 111 3 3 5 2 66 173 4 224 4 6 15 26
PROXY 113 1 5 3 85 2 2 1 12 2

FTP 129 49 6 3 25 4 4 1 2 7 5 1 22
OTHER 121 46 4 12 3 19 3 10 3 1 1 4 2 13
UNKN 3315 1415 34 107 68 590 22 71 18 177 1 8 8 18 204 89 87 133 15 15 235

Pa
yl

oa
d

WEB 11392 2620 627 671 1143 810 1316 1003 4 225 1 11 858 177 183 519 694 522 6 2
MAIL 648 29 15 6 24 24 33 42 8 2 15 169 144 12 38 83 4
DNS 1171 14 50 33 6 53 14 25 241 4 56 54 52 1 201 169 3 40 50 104 1
P2P 430 309 2 20 7 68 1 16 4 2 1
SSH 1023 30 505 12 39 50 29 28 33 16 62 97 10 37 54 20 1

FAILED 504 128 5 11 7 54 16 7 9 18 21 66 1 29 40 7 2 5 69 9
FTP 300 28 1 1 124 6 1 12 1 18 1 107

CHAT 152 3 12 1 3 2 2 18 110 1
STREAM 107 41 18 3 43 1 1
OTHER 106 29 32 8 2 11 1 4 1 3 5 8 1 1
UNKN 3614 1363 4 205 51 286 17 28 20 414 374 242 4 8 236 54 54 25 9 42 178

#packets to stop separation 500 1000 1000 1000 1000 1000 1000 50 1000 20 50 1000 1000 1000 1000 1000 1000 1000 500 1000

In addition, the overall similarity among the results from the
three classifiers cross-validates the effectiveness of them.

Clusters can show the typical host behaviors hidden in a
single category. WEB of R-BLINC, for example, is separated
into a few clusters, reflecting the different behaviors of web
hosts such as server, client, and P2P user. Moreover, the
WWWC (web client) category of Port is clustered into a few
groups, and a plausible reason for this is that there are a
few typical behaviors of web clients based on the usage of
web such as large-file transfer, web browsing, and ajax-based
activity. Also, the MAIL category of Port shows the behaviors
of both server and client (C14), only server (C18), or only
client (C5, C6, and C7). This observation can also be validated
by the other major categories in the same cluster (e.g., WWWC
of Port in C14).

In particular, the ability to cluster unknown data is an
advantage of the unsupervised approaches. Our clustering
method provides key information to profile hosts that R-
BLINC classifies as UNKN by separating these hosts into
different categories. For example, C3 separates 577 UNKNs of
R-BLINC from the totally 5268 UNKNs of the classifier, and
we can speculate that most of the 577 UNKNs are web servers
as most hosts in the cluster are classified as web servers (e.g.,
C3 mainly consists of 348 WEB hosts labeled by R-BLINC
other than the 577 UNKN hosts). The same is probably true
for other UNKNs of the three classifiers. Thus, the results of
the classifiers and of our approach complement each other.

The effectiveness of a connection pattern-based approach
can also be complementarily improved by port- and payload-
based approaches. One notable example is C1, which contains

the most UNKN hosts from R-BLINC. Port and Payload
both indicate that this cluster is mainly related to P2P, web
server, and web client hosts. These classifiers seem to give
similar reports for the cluster because the numbers for each
category are similar (e.g., approximately 2700 web hosts for
each classifier).

3) Dominant features: Here we extend the previous dis-
cussion by evaluating which out of the Dim = 44 features
significantly contributed to the N = 20 obtained clusters
(Table III). For this evaluation, we use Fast Correlation-Based
Filter (FCBF) [31, 23, 16], a feature ranking and selection
method. We note that FCBF is used only for evaluating the
relative contribution of the features to the clustering results
and is not used for other parts of this work.

FCBF selects the most effective and smallest set of features
with respect to symmetric uncertainty (SU) ∈ [0, 1], which
measures a form of correlation between two random variables:
SUX,Y = 2H(X)−H(X|Y )

H(X)+H(Y ) , where H(·) is the information-
theoretical entropy and H(·|·) is the conditional entropy.
SUi,c is the correlation between feature i and clusters (SU
against clusters), and SUi,j is that between features i and j
(SU against features). A higher SUi,c means that feature i
contributes to detecting one or more clusters, whereas a higher
SUi,j indicates that joint use of features i and j is redundant.
The method first removes irrelevant features (having low
SUi,c) and then excludes redundant features (having higher
SUi,j than SUi,c).

Table IV lists the selected features showing their SU against
clusters for MAWI and Keio data: N = 20 clusters for
MAWI with P = 1, 000, and N = 16 clusters for Keio with
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TABLE IV
GRAPHLET FEATURES EVALUATED BY A FEATURE SELECTION METHOD

FCBF. oi:j ARE MAINLY SELECTED BECAUSE OF HIGHER CONTRIBUTION
TO OBTAINING THE RESULTING CLUSTERS (TABLE III) THAN THE OTHER
FEATURES, EVEN THOUGH THE OTHERS ALSO HAVE HIGH VALUES OF SU

AGAINST CLUSTERS.

MAWI Keio
feature SUi,c feature SUi,c

oi:j of srcPort → dstPort 0.51 oi:j of srcPort → dstPort 0.57
oi:j of dstPort → srcPort 0.48 oi:j of dstPort → srcPort 0.50
oi:j of dstIP → dstPort 0.39 oi:j of dstIP → srcPort 0.41
oi:j of dstIP → srcPort 0.39 oi:j of dstIP → dstPort 0.40
µi:j of dstIP → srcPort 0.36 ni of proto 0.06
βi:j of dstIP → srcPort 0.34
µi:j of dstPort → dstIP 0.31
ni of proto 0.10

P = 100. The features selected by FCBF are mainly oi:j

(the number of one-degree nodes) for both datasets, and this
result suggests that this type of feature is more relevant and
less redundant than the other features. Our interpretation of
this result is that oi:j can well represent part of a graphlet
(i.e., area between i : j and j : i) such as shape – (i) square
(parallel line(s) between columns), or (ii) triangle (a knot on
a column), and the number of lines (i.e., visual complexity) –
(1) one line, (2) a few lines, or (3) many lines. They should
be basic characteristics of the behavior of network hosts, and
oi:j can represent such characteristics compare to the other
features proposed in the present work. Figure 1 well shows
the effect of oi:j . Square shapes such as the area between A5

and A6 in Figure 1(b) occur when both the values of oi:i+1

and oi+1:i are high. On the other hand, triangle shapes such
as area between A4 and A5 in the figure appear when one of
oi:i+1 and oi+1:i is quite low (e.g., zero or one). In particular,
oi:j between srcPort and dstPort contribute significantly to
the clustering (1st and 2nd rank in Table IV). Indeed, the
relation between the ports represents the detailed behavior of
inter-process communication, which is an important aspect of
networking.

Even though other features also have discriminative power,
such features were removed from the best set of features. For
example, we observed that n of srcPort has SUi,c = 0.43,
and α of srcPort to dstPort has SUi,c = 0.41 for MAWI data,
indicating that these features are also useful. These features,
however, were removed because of their high correlation with
oi:j (e.g., a higher oi:j will be provided by a higher ni), which
means that these features have similar but weaker effect on
the clustering compare to oi:j . In other words, oi:j is a good
approximation of the shapes of graphlets. Even so, the other
features are also necessary for inferring synoptic graphlets (see
next section), and this is why we used all the features for the
clustering.

V. SYNOPTIC GRAPHLET

According to the unsupervised procedure described in
Sec. IV, graphlets associated with hosts are clustered with
respect to their feature vectors. Now, as an inverse problem
aiming to associate each cluster with a representative graphlet,
as sketched in Figure 5, we propose a method to construct
a synoptic graphlet from the feature vector representing a

Cluster Ci Centroid feature
vector

Re-visualized
synoptic graphlet

Ci

Fig. 5. Synoptic graphlet. Graphlets obtained from hosts are clustered. In
turn, each cluster is associated with a representative a posteriori synoptic
graphlet. The second row of Table III displays the synoptic graphlets re-
visualized from the actual clusters of hosts.

A1 A2 A3 A4A2 A3

(3) Rewire bipartite graphs from
 reproduced degree distributions

(4) Merge bipartite graphs  with
and 

A1 A2 A3 A4A2 A3

Node ID

Degree

1

0

Filled area :
A1 A2 A3 A4A2 A3

A1 A2 A3 A4A1 A2 A3 A4A2 A3

Resulting synoptic graphlet

(1) Put nodes based on      (Inter-
mediate columns are duplicated)

n i (2) Reproduce degree distributions
from     ,            ,            , andn i o i : i+1

α

o
n

(Merging  i:i+1 and i:i-1)

n μ×

μ i : i+1 α i : i+1

α i : i+1 β i : i+1

(Rewiring between i:i+1 and i+1:i )

Fig. 6. Procedure of re-visualizing synoptic graphlets. A synoptic graphlet
of a cluster is reproduced from the graphlet features of the cluster centroid.
Graphlet features are defined in Sec. IV-A1 and Figure 3.

cluster. This reproduction of interpretability for clustering
results constructs the remaining part of bridge.

A. Synoptic graphlet: construction

An original mapping from a feature vector into a set of
bipartite graphs that constitute a graphlet is detailed here and
illustrated in Figure 5. This mapping is applied to the feature
vector of the cluster centroid.

Median centroid. Recalling that the feature vector of host
h was defined as xh = (xh,1, . . . , xh,Dim), let us define cc =
(cc,1, . . . , cc,Dim) as the centroid features of Cluster Cc, where
the |Cc|

2 -th largest value of xh,i among h ∈ Cc is selected as
the median feature cc,i. As an example, for n2, if a cluster
contains 100 hosts, the 50th largest value in n2 is chosen as
the median (xi and xj (i 6= j) does not necessarily derive
from the same host). We note that statistics other than the
median could be chosen as a representative. We also tried
to use average as representative, but average is not robust to
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outlier features, and more critically taking the averages lead to
decimal values, with which it is difficult to deal because degree
features are generally integer. The Dim-dimensional median
features are converted from a log scale into a linear scale by
inverting the normalization function defined in Sec. IV-A2.

(1) Considering a graphlet as a set of bipartite graphs.
To infer a graphlet from the centroid features of a cluster,
we construct a graphlet as a set of bipartite graphs. A1 and
A2 are a disjoint set of a bipartite graph, A2 and A3 are
another, and so on. In other words, we break down the graphlet
reproduction problem into rewiring of each bipartite graphs
and merging neighboring ones.

(2) Reproducing degree distributions. From a feature
vector, we build the degree distribution of direction i : j
(j = i + 1 or i− 1), denoted as D̂i:j = (d1, . . . , dn) where n
is the total number of nodes as defined in Sec. IV-A1 (“i : j”
is omitted from dk,ni:j and ni:j for brevity). We first consider
the one-degree nodes as follows: dn = dn−1 = dn−o+1 = 1.
If each of all the nodes has degree of one (i.e., n = o), this
procedure ends; otherwise we rebuild the remaining part of
the degree distribution. We define the number of remaining
nodes ζ and the remaining degrees ξ as ζ = n − o and
ξ = µ × n − 1 × o. The degrees are estimated as follows:
d1 = α, d2 = α − ∆, . . . , dζ = α − (ζ − 1) × ∆, where
∆ = 2

ζ−1 (α − ξ
ζ ), which satisfies ξ = d1 + . . . + dζ . This

process to distribute the remaining degrees to the remaining
nodes is based on the usual appearances of graphlets (e.g.,
some ‘knot’ nodes, only one, etc.).

(3) Rewiring bipartite graphs. A bipartite graph is gen-
erated from D̂i:i+1 and D̂i+1:i computed above. Nodes of
higher degrees of Ai are connected with those of lower
degrees of Ai+1, which reflects a traffic characteristics (one-
to-many connection rather than two-to-many) we empirically
observed. An example of this characteristics is server-client
behavior, where (a) a source port is connected with several
destination hosts and also (b) a destination host is associated
with disjoint sets of several destination ports. By defining
i : i + 1 as r (right) and i + 1 : i as l (left), we connect
v1,r with vnl,l, . . . , v(nl−d1,r−1),l, and then connect v2,r with
vk,l, . . . , v(k−d2,r−1),l, where k is the largest label of nodes
that have degree remaining after the previous connections. We
iterate this connection procedure until vnr,r is dealt with and
consequently obtain a bipartite graph.

(4) Merging bipartite graphs into a synoptic graphlet.
A synoptic graphlet is then drawn by combining each pair
of neighboring bipartite graphs. We additionally define the
direction: i : i+1 as f (forward) and i : i−1 as b (backward).
The two directions have different degree distributions with the
same number of nodes: D̂f and D̂b, and a pair (dk,f , dl,b) is
merged into a node vm,i, where k, l, and m are determined
as follows. We first compute the degree correlation between
D̂f and D̂b, which we define as γ = (αf − αb)× (βf − βb),
with αi:j and βi:j of the centroid features. If the correlation
is positive (γ ≥ 0), we combine the nodes in the same order
of degree value: v1,i = (d1,f , d1,b), . . . , vn,i = (dn,f , dn,b).
Conversely, for γ < 0, the combination order is reversed:
v1,i = (d1,f , dn,b), . . . , vn,i = (dn,f , d1,b).

Synoptic graphlets versus graphlets nearest to centroids.
The graphlet nearest to centroid can be selected as a represen-
tative of the cluster. However, such a graphlet is not necessarily
typical with respect to all the Dim features, even though
many of them are close to the centroid. Instead, the proposed
synoptic graphlet is more effective for understanding what
actually happens in the feature space, because it is regenerated
from all the representative features of a cluster.

B. Synoptic graphlet: interpretation
The second row of the column headings in Table III

shows the synoptic graphlets, re-visualized from the N = 20
clusters presented in Sec. IV-B (larger versions are displayed
in Figure 9).

Effectiveness of synoptic graphlets. The advantage of
synoptic graphlets is the ability to construct an intuitive
understanding of the clustering results. The ‘complexity’ of
the shapes of synoptic graphlets meaningfully represents the
intensity of flows. For example, a graphlet of many lines
is derived from the use of many flows, indicating that the
corresponding host uses an application for many peers and/or
many ports (e.g., DNS and MAIL are the categories of the
many-lines graphlets such as C8 and C15). In addition, the
number of nodes for each column Ai is also meaningful.
For instance, if A3 (srcPort) has only a few nodes, then the
corresponding host can be speculated to be a server (e.g., C3

is mainly labeled as WWWS by Port).
BLINC models validity. Most of the synoptic graphlets in

Table III correspond to most of the BLINC graphlets (listed
in [15]), and thus our result validates the intuitions behind the
BLINC series. An exception, though, is pointed out by C11;
most hosts are identified as UNKN by R-BLINC, whereas they
are mainly identified as FLOOD by Port (probably because of
a large amount of SYN packets and few targeted hosts). On
the other hand, some clusters of similar shape have similar
breakdown such as C17 and C18. This indicates two typical
number of flows in graphlets, which might not easily be found
by applying untuned heuristic rules (e.g., recall that BLINC
requires 28 tuned parameters).

One-flow graphlets. C1 represents synoptic graphlets com-
posed of one flow (4594 in total – about 25% among the
analyzed hosts), and the three classifiers unfortunately identify
many of them as UNKN. This kind of isolated communication
has been observed in [12, 10, 13] as well. Although one-flow
graphlets are classified into various categories, the one-line
shape itself reveals the important information that P = 1000
packets from a single host constitute only one flow. In other
words, a one-flow graphlet possibly implies large file transfer,
because we do not observe any control flows or the other
flows. This plausible interpretation is supported by the finding
that many of these hosts identified by the three classifiers are
web or P2P users, which are occasionally used for host-to-host
large-file transfer in some cases.

In summary, synoptic graphlet is effective in intuitively
understanding the clustering output, and the comparison result
indicates the relevance of the overall idea of BLINC, while yet
pointing out the difficulty of manually setting appropriate rules
and parameters.



10

...

...

...

...

...

...

pkt=1
(snap 1)

pkt=2
(snap 2)

pkt=5
(snap 3)

pkt=1
(snap 1)

pkt=2
(snap 2)

pkt=5
(snap 3)

C1,1
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C1,3

C2,3

C3,3

Clustering results with different number 
of packets (different snapshots)

Evolutionary tree connecting related 
clusters of neighboring snapshots

Fig. 7. Creation of evolutionary tree. The unsupervised clustering is
performed for several number of packets P per host. A consistent set of
hosts 1, . . . , H and a single threshold θ are used throughout the examination
over several P . A situation associated with a certain P is called a snapshot s,
and Cc,s in the figure represents Cluster c obtained at snapshot s. Resulting
several set of clusters are merged into a single evolutionary tree by means of
connecting similar clusters of neighboring snapshots on the basis of the other
threshold φ. The evolutionary tree is effective in intuitively understanding the
divergences and convergences in the growth of host characteristic with the
support of synoptic graphlet.

VI. EVOLUTIONARY NATURE OF HOST-LEVEL TRAFFIC

Let us further present the effectiveness of the proposed
method. This section introduces evolutionary tree of synoptic
graphlets, which provides intuitive understanding of the diver-
gences and convergences in the growth of host characteristics
according to the increasing P . This tree can also answer the
question “how many packets P do we need to find all typical
patterns?” and “how accurately hosts can be profiled with how
many packets P ?”

A. Evolutionary tree: creation

Snapshot. We define a snapshot as the stage where each
graphlet is drawn by a certain number of packets P (e.g., P =
100 for Figure 1). A graphlet is made of a set of packets, and
hence different sets might generate different graphlet shapes,
even if the packets are sent by an identical host. For instance,
only one packet (thus one flow) makes a single-line graphlet,
whereas two packets may result in a single line if the two
packets are in the same flow or result in two lines sharing some
nodes and edges if the corresponding attributes are common in
the two packets. The key observation for creating evolutionary
trees of synoptic graphlets is that any graphlet may evolve
from an identical shape (single-line) as P increases (i.e., as
the snapshot changes).

Tree creation. The evolutionary tree is obtained from com-
bining the results of clustering for successive snapshots. We
extend the definition of obtained clusters to Cs,1, . . . , Cs,Ns

,
where s represents a snapshot and Ns is the total number
of obtained clusters at s. Each set of clusters for each P is
obtained with a consistent value of the single threshold θ,
which is the distance basis in the feature space. This threshold
hence does not determine a priori number of resulting clusters,
which allows to compare clustering results for different P
with regard to the consistent basis in the feature space. We
select P = 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 for snap-
shots s = 1, . . . , 10 for the MAWI data, and we examine
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Fig. 8. Characteristics of the threshold for evolutionary tree φ, which is
a criteria to connect clusters of neighboring snapshot. For MAWI dataset,
φ = 0.0077 is selected so that the resulting evolutionary tree (Figure 9) has
no isolated cluster.

P = 1, 2, 5, 10, 20, 50, 100 for s = 1, . . . , 7 for Keio data.
The tree is created with a single criteria: if the number of
hosts in Cs,i ∩ Cs+1,j is larger than φ × H (recall that H is
the total number of analyzed hosts), the two clusters Cs,i and
Cs+1,j are connected by a line. This line means that the typical
behavior Cs,i at snapshot s tends to evolve into Cs+1,j at s+1.
Finally, we obtain an evolutionary tree of synoptic graphlets,
which provides an intuitive overview of the behavioral growth
of hosts.

Threshold. The threshold φ determines whether neighbor-
ing clusters are connected or not, and it results from the
following trade-off. For too high φ, there might be ‘isolated’
clusters, which are not connected to any other clusters on
any neighboring snapshot. For a too-low φ, there will be
many ‘impossible’ evolutions in graphlet shapes. For example,
some synoptic graphlets might reduce their αi:j because of
the changes in the set of hosts inside cluster, despite this does
never occur in the evolution of the graphlet of a single host.
We define impossible evolution as the connection between two
clusters at snapshots s and s + 1, where the corresponding
synoptic graphlet at s reduces at least one of ni, µi:j , and
αi:j as the snapshot changes to s + 1. Figure 8 shows this
trade-off, plotting the number of isolated clusters and that
of impossible evolutions as a function of φ. We empirically
choose φ = 0.0077 (0.77%, hence about 150 hosts) for the
MAWI data and φ = 0.0070 (0.70%, thus about 70 hosts) for
the Keio data, which maintain no isolated cluster and a low
number of impossible evolutions.

B. Evolutionary tree: interpretation
1) Intuition from evolutionary tree – visual analysis: Figure

9 depicts the resulting evolutionary tree from the MAWI traces
(H = 20, 000 hosts). Synoptic graphlets at snapshot s are
showed in the s-th column, and related synoptic graphlets of
neighboring snapshots are linked with arrows. Written on the
arrows are the number of hosts in the transition and (in the
parentheses) the fraction out of the total number of analyzed
hosts. The tree is created with θ = 500 (selected in Sec. IV-B1)
and φ = 0.77% (selected in Sec. VI-A). We note that this
θ = 500 is consistently used for any P . The synoptic graphlets
at s = 10 correspond to the evaluations presented in Secs. IV-B
and V.

Entire view. This figure provides an intuitive overview of
the evolution of the diversity of typical host behaviors. From
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Fig. 9. Evolutionary tree of synoptic graphlet (MAWI), relating clustering results of different P with θ = 500 and φ = 0.0077 for H = 20, 000 hosts.
The consistent value of θ is used for each P , which produces appropriate number of resulting clusters with a single criterion in the feature space (without
determining a priori number of clusters). Clusters are represented as synoptic graphlets, and connected with lines if two neighboring clusters have higher
number of hosts in common than φ × H . This figure provides an intuitive survey of growth characteristics of hosts according to the number of analyzed
packets.

the origin of graphlets at P = 1, to higher P , the diversity
of the synoptic graphlets increases, and thus the figure can
be used to comprehensively interpret the changes in graphlet
shapes through a series of snapshots. In addition, the clusters
interestingly do not only separate but also merge as snapshot
changes. This suggests that there are different footprints of
evolution of hosts, even if these hosts are cluster into a
single group at a snapshot; examining host characteristics with
different P would hence enhance profiling methods because of
the richer information.

Early stages. Now let us focus on the earlier stages (i.e.,
low P ). For P = 1, there is only a one-flow graphlet as
expected. For P = 2, the synoptic graphlets show only seven

major types of clusters, even though there are theoretically
24 = 16 possible graphlet shapes, resulting from 16 possible
combination of the four attributes (proto, srcPort, dstPort, and
dstIP). Furthermore, by tracking the succeeding evolutionary
footprints, the possible shapes are found to become limited
even at these early stages; a cluster starting at P = 2 can
evolve into only at most half of all the possible N = 20 shapes
at P = 1000. Although some real graphlets are different in
shape from the seven synoptic graphlets and have different
transitions, these are not typical, so they do not appear in the
figure. Such hidden graphlets could be found by finer-grained
clustering with lower θ.
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Fig. 10. Predictability of evolution. Each dot shows the value of predictability
of a synoptic graphlet. Symbols A, B, C indicate synoptic graphlets A, B, C
of Figure 9. High predictability of a synoptic graphlet means that the graphlet
does not tend to separate into different ones. The average predictability
logarithmically increases, while some predictabilities abruptly increase.

Late stages. Earlier stages provide graphlets with several
choices for their future stages, but their final forms become
apparent in the late stages. For example, although one-flow
graphlets extensively vary at earlier ages, they are most likely
destined to remain one-flow graphlets as suggested by the
limited number of separations in the evolution. One-flow
graphlet A is destined to mostly remain one-flow since the
stage at P = 20, as indicated by the abrupt increase in
predictability discussed later in Sec. VI-B2. Another example
is synoptic graphlets B and C, which are prominent at P = 20
and 50. Since synoptic graphlets B and C are mainly related
to scanning activities, this result indicates that P = 20 has
enough information to separate scanners from other activities.
As a whole, the total number of clusters at P = 1000 is
almost unchanged from that at P = 100, and thus we consider
P = 100 to be the reference number of packets required
for accurately discovering typical host behaviors. The bottom
row in Table III lists each stage at which each cluster CS,i

stops its separation in the evolutionary tree (i.e., becomes quite
predictable).

Keio data case. We obtained similar results for the Keio
data, but one different finding was that one-flow graphlets still
change into other shapes at P = 50. We consider that the
stagnation of one-flow graphlets for MAWI could be derived
from the partial view of traffic measured at the backbone link,
whereas Keio traffic is measured at an edge router.

2) Predictability in evolution – quantitative analysis: To
complete our understanding of the process of graphlet evo-
lution, we quantify the predictability of evolution of a given
host in the tree. Let us define P (Cs2,j |Cs1,i) = |Cs2,j∩Cs1,i|

|Cs1,i| ,
which measures the probability that hosts in Cluster i at
snapshot s1 (Cs1,i) evolves into Cluster j at s2 (Cs2,j). We
define the predictability of cluster Cs,i as Pred(Cs,i) =
1 + 1

log10 NS

∑NS

j=1 P (CS,j |Cs,i) × log10 P (CS,j |Cs,i), where
S is the final snapshot and NS the corresponding number
of clusters. Pred(Cs,i) is hence a normalized entropy that
characterizes the dispersion of transition probabilities. Thus,
if Cs,i grows only to CS,1 then Pred(Cs,i) = 1, whereas if
Cs,i can evolve into any future shapes with equal probability
then Pred(Cs,i) = 0. Note that the predictability is computed
regarding the evolutionary tree with any possible evolution of
analyzed host (i.e., φ = 0).

Figure 10 displays the predictabilities of all clusters
Pred(Cs,i) as a function of the number of analyzed packets
P (or snapshot s equivalently) for MAWI and Keio. Each
dot represents a cluster (or a synoptic graphlet equivalently)
at a snapshot, and the line represents the transition in the
average predictability. The line shows that predictability is
approximately linear with the logarithm of the number of
analyzed packets (Pearson’s correlation coefficient is 0.95)
Predictability at P = 1 is almost 0, which suggests that
the corresponding origin of a graphlet can evolve into any
final graphlet. Conversely, predictability becomes higher with
higher P . In addition, predictabilities at some dots (some Cs,i)
abruptly become higher than others; That is, such clusters’
future shapes are almost predestined at that snapshot. There
are noteworthy points A and B at P = 20 and C at P = 50,
related to synoptic graphlets A, B, and C in Figure 9. The
high value of the predictability for these synoptic graphlets
also supports the finding from the evolutionary tree that the
future of these graphlets is destined earlier and hence can be
easily distinguished with fewer packets than other types of
graphlets.

VII. DISCUSSION

Revisiting BLINC. The results presented in Secs. IV-B and
V validate the concepts at work in BLINC, as most of the
auto-generated synoptic graphlets can be related to empirically
defined BLINC graphlet models [15]. However, such heuristic
model-based approaches face the potential difficulties in (a)
designing appropriate rules as indicated by the observed un-
known clusters and that in (b) determining the relevant values
of thresholds for accurate classification (i.e., 28 thresholds) as
displayed by the variability of actual typical behaviors. Instead,
unsupervised approaches can promisingly uncover new types
of applications with the tuning of only a very limited number
of threshold levels.

Traffic characteristics evolution when increasing the
number of analyzed packets. Sec. VI showed that the method
requires around 100 packets to achieve prediction. This is
larger than the findings of a few previous works. For instance,
the work reported in [1] showed that major TCP flows can be
identified on bi-directional links from their size and direction,
by examining only the first four or five packets (after the
handshake) in a connection. Other works [25, 8, 20] also
claimed such an ability. The present work, however, deals
with more general traffic assumptions: uni-directional links,
legitimate as well as anomalous and unknown traffic, many
protocols besides TCP, not certainty of observing the first
packets of flows. In this context, the need to collect a larger
amount of information to predict traffic characteristics does
not come as a surprise.

Limitations. (a) The degree-based features used here do
not include relations among non-neighboring columns such as
A1 and A3. (b) In addition, real graphlets are not as clean
as rewired ones, because they include packets unrelated to
the main behaviors of the hosts. Features could be weighted
to remove such noise packets, e.g., the width of edges and
the radius of nodes could be set based on the number of
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packets. (c) In some cases, host behaviors may result from
two dominant kinds of applications, e.g., a host serving both
mail and DNS, or a NAT gateway with a web client and a P2P
user. Such a host cannot easily be profiled.

Applicability to other works. (a) The shape-based fea-
tures proposed in this work can be applied to other super-
vised/unsupervised methods. (b) The method for re-visualizing
graphlets is plausibly applicable to other contexts, because
graphlet is not specific to 5-tuples or even network traffic;
Graphlets can be useful when one want to represent multivari-
ate information as a visual manner in a reduced dimension. (c)
The idea of constructing evolutionary tree would also be useful
in other contexts, where one wants to construct an entire view
of clustering outputs resulting from an increasing/decreasing
parameter.

VIII. CONCLUDING REMARKS

The main issue of the present work was the trade-off in
choosing between supervised and unsupervised approaches to
end-host profiling. The former is comprehensive but is blind
to undefined classes, while the latter can uncover unknown
pattens of behavior at the sacrifice of interpretability. To bridge
the gap between the two, a method has been developed in
the present work. The proposed method was designed to
perform unsupervised clustering for finding undefined classes
and to re-visualize clusters as synoptic graphlets for pro-
viding interpretability. The method was compared against
a graphlet-based state-of-the-art classifier (BLINC) as well
as against classical port-based inspector and payload-based
one, by applying these methods to two sets of actual traffic
traces measured at different locations. The proposed method
spontaneously generated synoptic graphlets that are typical in
their shape, which validates the graphlet models heuristically
pre-defined in earlier works. Also, for methodological study
of the improvements brought to host profiling, this work
demonstrated how to extend beyond a simple classification
to the production of an evolutionary tree by increasing the
number of observed packets per host. The entire procedure
requires only a few threshold to be tuned while the state-
of-the-art method needs many. The new achievements in this
contribution read as follows: (a) an unsupervised clustering
applied to graphlet shape-based characteristics, which is fur-
ther significantly extended to (b) a visualization-oriented auto-
enumeration of typical host behaviors generated from actual
data, successfully resulting in validating the relevance of past
works, and (c) an analysis on evolutionary characteristics of
the growth of host behaviors both in visual and quantitative
manners, which is useful in understanding the evolutionary
nature of host behaviors.
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